A STRONG COMPUTATIONAL METHOD FOR SOLVING OF SYSTEM OF INFINITE BOUNDARY INTEGRO-DIFFERENTIAL EQUATIONS

Authors

  • Abbas Riahifar University of Mazandaran Iran, Islamic Republic of
  • H. Abdollahi University of Mazandaran Iran, Islamic Republic of
  • M. Matinfar University of Mazandaran Iran, Islamic Republic of
Abstract:

The introduced method in this study consists of reducing a system of infinite boundary integro-differential equations (IBI-DE) into a system of al- gebraic equations, by expanding the unknown functions, as a series in terms of Laguerre polynomials with unknown coefficients. Properties of these polynomials and operational matrix of integration are rst presented. Finally, two examples illustrate the simplicity and the effectiveness of the proposed method have been presented.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Application of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations

In this study‎, ‎an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials‎. ‎Properties of these polynomials and operational matrix of integration are first presented‎. ‎These properties are then used to transform the integral equation to a matrix equation which corresponds t...

full text

The Legendre Wavelet Method for Solving Singular Integro-differential Equations

In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.

full text

Finite difference method for solving partial integro-differential equations

In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...

full text

The Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model

This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...

full text

A numerical method for solving delay-fractional differential and integro-differential equations

‎This article develops a direct method for solving numerically‎ ‎multi delay-fractional differential and integro-differential equations‎. ‎A Galerkin method based on Legendre polynomials is implemented for solving‎ ‎linear and nonlinear of equations‎. ‎The main characteristic behind this approach is that it reduces such problems to those of‎ ‎solving a system of algebraic equations‎. ‎A conver...

full text

Convergence of the multistage variational iteration method for solving a general system of ordinary differential equations

In this paper, the multistage variational iteration method is implemented to solve a general form of the system of first-order differential equations. The convergence of the proposed method is given. To illustrate the proposed method, it is applied to a model for HIV infection of CD4+ T cells and the numerical results are compared with those of a recently proposed method.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 3 (SUMMER)

pages  251- 258

publication date 2015-03-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023